Skip to content Skip to footer
Online Master of Science in Computer Science

AI & Machine Learning

Become an Artificial Intelligence Expert by mastering the skills to develop intelligent algorithms and machines for self-driving cars, smart cameras, surveillance systems, robotic manufacturing, machine translations, internet searches, and product recommendations.

  • Start, study, graduate and get a job!
  • No tuition fee until you are hired.
  • Starting date: Jan 2022

No Tuition Until Hired

Here at Contech, you can commence your degree program without any payments. After graduation and landing a high-paying job, you can start paying your tuition $500 a month, thanks to our Study Now, Pay Later Model. 

High Demand

Professionals working in AI & Machine Learning fields earn between $ 90,000 - $234,000 annually.

Employability Focus

We will be providing Practicums for acquiring hands-on skills and extracurricular courses, where you create your personal brand and getting ready for interviews.
AIEFocus
creative approach

Master's Degree Program with Employability Focus

The Master of Science in Computer Science with specialization in Artificial Intelligence & Machine Learning is created for students who are looking to gain practical and job-related knowledge for a career in artificial intelligence. This program provides students with both theoretical and activity-based learning, enabling them to enhance their careers.

The curriculum encompasses a variety of courses ranging from fundamentals to the latest topics such as deep learning, natural language processing, human-computer interactions, and modern optimization techniques. The total length of the program is one year with 30 credit hours. 

Through advanced projects, you will have the opportunity to apply knowledge and skills to real-world challenges and obtain summative and formative feedback from expert instructors in the field. The hands-on training ensures job readiness upon graduation.

You want to

become an expert on Machine Learning

you want to

become an expert on Machine Learning

throughout this program

You Will Acquire Skills for

  • Python
  • Statistics
  • Data Science
  • SQL databases
  • Data Cleaning
  • Data Manipulation
  • Data Visualization
  • Machine Learning
    Reinforcement Learning
  • Deep Neural Networks
    Natural Language
  • Processing (NLP)
    Convolutional Neural Network (CNN)
  • Recurrent Neural Network (RNN)

Program Structure

The program is designed within a sequenced learning path including a predefined order of courses. As the student completes one course, access is granted to the next one. All of the courses structured in this path are compulsory and the student has to finish one course at a time. This allows students to gain knowledge sequentially and apply it immediately. This experiential learning approach increases information retention and eventually, execution. The learning path helps students’ understanding of what is expected of them and their preparation. It also facilitates gathering timely feedback that increases the effectiveness of learning. Researchers show that this holistic experience is vital in adult students’ engagement and achievement.

The program consists of 4 semesters and each semester includes 3 courses except the final semester that covers capstone project progress. All courses are scheduled for 4 weeks within a final course project.

Tools Covered

Tools Covered

Take a look on

Our Curriculum

Contemporary Technology University is aware of adults’ specific learning characteristics and needs, and embraces a collaborative pedagogical approach, and incorporates instructional models such as the 4E Learning Cycle. Each course adapts its daily contents in a learning cycle that helps students build a strong foundation of knowledge through active participation. Each course activity is designed as a part of cognitive stages of learning that comprise engaging, exploring, extending, and evaluating.

This course will explore the fundamental principles and techniques of the Python programming language as well as its usage in data-centric fields, which are becoming more and more popular for all industries. Students will have a chance to examine real-world examples and cases to place data science techniques in context. Students will further develop data-analytic thinking. This course will illustrate that the proper application of data science is as much an art as it is a science. Finally, this course covers Python-associated data analysis libraries for conducting data science techniques successfully.

This course will expose students to essential toolsets to conduct data-related analysis. Students will learn about how to navigate the file system, how to alter permissions for different users, and how to create and run a Python script from the command line to become comfortable in day-to-day data analysis tasks. Students further exposed to learn Git and Version Control systems and why it’s critical to be able to use version control in any sort of collaborative programming environment by covering the fundamentals, including how to clone a project to your local machine, iterate on the project by creating branches, and push your work to Git remotes like Github. Students will also learn the basics of this critical skill and start building some experience working with SQL databases to explore and analyze data in SQL through hands-on active learning.

In this course, students will get an introduction to statistics and how this mathematical discipline is used in data science. Students will also learn to measure variability using variance or standard deviation, and how to locate and compare values using z-scores. This course will cover the fundamental rules of probability, and then work to solve increasingly complex probability problems with techniques like permutations and combinations. Students will be expected to understand the difference between theoretical and experimental probability. Students then will be exposed to advanced statistical concepts such as significance testing and multi-category chi-square testing for more powerful and robust data analysis. Students will learn about single and multi-category chi-square tests, degrees of freedom, hypothesis testing, and different statistical distributions. And students will work hands-on with multiple datasets to learn statistical concepts.

In this course, students will learn how to supercharge data analysis workflow with cleaning and analytical techniques from the Python pandas library. Students will learn concepts such as group by objects to solve split-apply-combine problems faster. Students will also learn how to use pandas to create pivot tables, concatenate data, and merge data to solve complex data problems as well as look at your data in a completely different way.

In this course, students will be introduced to Panda’s DataFrames to import and inspect a variety of datasets and practice building DataFrames from scratch, and become familiar with Pandas’ intrinsic data visualization capabilities. Students will learn and apply exploratory data analysis (EDA). Students will learn how to manipulate and visualize time series data using Pandas. Students will become familiar with concepts such as upsampling, downsampling, and interpolation by using Pandas’ method chaining to efficiently filter data and perform time-series analyses.

In this course, students will learn about the different number of resources to explore and showcase data in an easy and digestible way. This course will cover how to use matplotlib to create visualizations such as line charts, bar plots, scatter plots, histograms, and box plots to better understand your data and help others understand your data as well.

In this course, students will learn about the basics of machine learning. This course will cover concepts such as K-Nearest Neighbors (KNN) Algorithms and error metrics such as the Mean Squared Error and the Root Mean Squared Error. Students will also learn about hyperparameter optimization, a technique used to optimize machine learning algorithms to boost the accuracy and performance of trained models. Then students will dig into k-fold cross-validation to perform more rigorous testing for machine learning models.

In this course, students will be introduced to Reinforcement Learning and its applications. Students will learn about Markov Decision Processes, Bandit Algorithms, Dynamic Programming, and Temporal Difference (TD) methods. Then, students will be introduced to the Value function, Bellman Equation, and Value iteration. Students will also be introduced to Policy Gradient methods. Students will learn to make decisions in an uncertain environment.

In this course, students will learn about what is AI, explore neural networks, understand deep learning frameworks, implement various machine learning algorithms using Deep Networks. Students will also explore how different layers in neural networks do data abstraction and feature extraction using Deep Learning.

The purpose of the Capstone Project in AI & Machine Learning is for the students to apply theoretical knowledge acquired during the M.Sc. in C.S. program to a project involving actual data in a realistic environment. During the project, students engage in the entire process of solving a real-world AI & Machine Learning project, from collecting and processing actual data to applying suitable and appropriate analytic methods to the problem and developing machine learning models. Both the problem statements for the project assignments and the datasets originate from real-world domains similar to those that students might typically encounter within the industry, government, non-governmental organizations (NGOs), or academic research.

Notice to Prospective Degree Program Students This institution is provisionally approved by the Bureau for Private Postsecondary Education to offer degree programs. To continue to offer this degree program, this institution must meet the following requirements: • Become institutionally accredited by an accrediting agency recognized by the United States Department of Education, with the scope of the accreditation covering at least one degree program. • Achieve accreditation candidacy or pre-accreditation, as defined in regulations, by (date two years from date of provisional approval), and full accreditation by (date five years from date of provisional approval) If this institution stops pursuing accreditation, it must: • Stop all enrollment in its degree programs, and • Provide a teach-out to finish the educational program or provide a refund.
Esteemed

Faculty Members

The program brings together leading academicians and industry experts to give you a practical understanding of core concepts. 

Arnold Jianwei Zheng

Adjunct Professor

Micah Gerelnyam

Adjunct Professor

Emmanuel Tsukerman

Adjunct Professor

Louis Sapia

Adjunct Professor

Atlas Khan

Adjunct Professor

Farhad Malek Ashgar

Associate Professor

Robert Kumar

Adjunct Professor

Admission

At Contech, we want to attract the most talented, not the most privileged students. We want to challenge your ambitions and imaginations in our admission process.

01

Application

*Create your account in My Contech*Apply to the selected program with the start date.*Fill out the application form and submit.
02

Selection

In this step, you need to complete two short assessments, upload necessary documents and upload a short video answering the requested questions (or you may also book a zoom interview with an admissions officer). Admission committee will review your documents and test scores to give you a final answer for acceptance.
Documents to be uploaded:*Certificate of graduation*Transcript*Proof for English Proficiency (for international applicants)
03

Enrollment

If you are accepted to the university, you will be receiving your acceptance letter. Additionally, you will be receiving your enrollment agreements alongside the school catalog and school performance sheet to sign digitally, within 3 days. After signing the enrollment documents you are officially enrolled as a Contech student. The community team will be welcoming you to the university and you will be joining our hub.
INNOVATIVE WAY FOR TUITION

Study Now, Pay Later!

Without any payments, you can enrol, study and graduate to receive your degree. Then, let us also help you to get you a job. Only then, you pay the tuition fee in installments of $500 a month.

Upfront Payment

This option allows you to pay for your whole tuition at the start of your program and receive a 20% discount.

Monthly Payment

If you choose this option, we divide your tuition into 12 installments, which you can pay every month as you progress in your studies.
AITuition

Lowest Possible Cost

Lowest Possible Cost

Tuition

International top-ranked colleges and universities squander substantial financial amounts on facilities and amenities most students never use, alongside outrageous graduate tuitions and fees – as high as $90,000 per annum – help pay for the waste.

Contech is different.

Our commitment to keeping operating costs low enables us to maintain a tuition that is about a fraction of that of other top universities. We solely charge what is compulsory to provide an exceptional education, inclusive of top faculty, maintaining small class sizes, offering innovative curriculum and challenging courses, and continually advancing the capabilities of the Active Learning Forum.

Students will not discover manicured gardens or million-dollar climbing walls at Contech because lavish amenities as such are believed to be superfluous to actual learning. By devoting every cent to independent student growth and development, Contech has proven that the value of education can far exceed its cost – not the other way around.

Who Should

Enroll in this Program?

With the demand for Artificial Intelligence in a broad range of industries such as banking and finance, manufacturing, transport and logistics, healthcare, home maintenance, and customer service, the Master of Science in Computer Science with specialization in AI & Machine Learning is well suited for a variety of profiles like:

  • Developers aspiring to be ‘Artificial Intelligence Engineer’ or Machine Learning engineers
  • Analytics managers who are leading a team of analysts
  • Information architects who want to gain expertise in Artificial Intelligence algorithms
  • Graduates looking to build a career in Artificial Intelligence and Machine Learning